
Yats	-	Paolo	Lulli
Generated	on:	12/12/2024

YATS	Manual

Yats	Server

Installing	YATS	Server

Building	the	sources

For	the	Community	Edition	the	sources	are	available	from:

$	git	clone	https://code.kevwe.com/git/yats.git

In	order	to	build	the	server

cd	server
go	build

The	server	executable	is	named	yats-server

Service	Configuration

You	can	start	different	named	instances	of	the	program.	An	instance	named	‘default’	is	expected	to	read
a	configuration	file	from:

	~/.yats/default.json	

where	the	content	is	something	like	:

{
		"databaseUsername":	"cassandra",
		"databasePassword":	"cassandra-password",
		"databasePort":	"9042",
		"databaseHost":	"127.0.0.1",
		"databaseSchema":	"yats",
		"restAddress":	"127.0.0.1:18081",
		"grpcAddress":	":50051",
		"tcpAddress":	":1025",
		"archiveFrequency":	"weekly",
		"archiveDirectory":	"/home/goodstuff",
		"archiveNode":	"true"
}

Starting	the	server

cd	yats
./script/service.sh	start

Stop	the	Server

cd	/opt/ows/service
./script/service.sh	stop

YATS	as	a	system	Service

In	order	to	keep	the	service	active	after	a	reboot,	Systemd	can	be	used	in	Linux	with	a	configuration	like
the	following:

#	cat	/etc/systemd/system/yats-service.service	
[Unit]
Description=YATS	Server	process
After=network-online.target
[Service]
Type=exec
ExecStart=/path/to/yats/script/service.sh	default	start
ExecStop=/path/to/yats/script/service.sh	default	stop
Restart=on-failure
[Install]
WantedBy=multi-user.target

Yats	Client

Installing	YATS	Client

Building	the	sources

For	the	Community	Edition	the	sources	are	available	from:

$	git	clone	https://code.kevwe.com/git/yats.git

In	order	to	build	the	client

cd	client
go	build

The	client	executable	is	named	yats

Access	to	the	help

You	can	easily	access	the	manual	page	by	typing	in	the	terminal:

$./yats	--help

This	will	print-out	the	full	list	of	commandline	options

Usage	of	./yats:
		-b,	--base64-decode											decode	base64	output
						--date																				midnight	of	day	<YYYYMMDD>	at	GMT
						--day																					days	ago
		-f,	--format																		format	output
						--from	int																from	tstamp
						--hour																				hours	ago
		-a,	--latitude	float										latitude
		-e,	--list-events													list	events
		-m,	--list-metrics	string					list	metrics	with	name
		-p,	--list-positions	string			list	positions	with	name
		-o,	--longitude	float									longitude
		-v,	--metric-value	string					metric	value
						--min																					minutes	ago
						--pki-init																create	CSR
						--sec																					seconds	ago
		-S,	--show-permissions								show	user	permissions
		-s,	--source	string											source	application
						--timestamp	int											timeStamp
						--to	int																		to	tstamp
		-u,	--unpack-json													unpack	base64/json	output
		-l,	--value-only														log	value	only	output
		-E,	--write-event	string						write	event	with	name
		-M,	--write-metric	string					write	metric	with	name
		-P,	--write-position	string			write	position	name
						--year																				years	ago

A	guided	walk-through

Yats	client	allows	to	manage	3	kind	of	entities	from	the	commandline:

Events
Metrics
Positions

Writing	Entities

All	options	have	a	long	version,	that	is	rather	self-explanatory,	and	a	shorter	version	for	better
ergonomics.	For	you	to	remember	easily,	short	commandline	switches	to	write	entities	are	uppercase	in
order	to	stand	out.

Writing	an	Event	from	commandline

Event	is	the	simplest	entity	in	YATS.	An	event	in	YATS	is	any	conventional	string	message	that	has	a
meaning	in	itself.	It	can	be,	for	example	a	systemSTART	in	the	case	of	some	sort	of	service	that	you	want
to	track.	You	could	have	in	this	case	systemSTART	and	systemSTOP	message.

With	the	client,	you	can	register	those	events	as	follows

	$	yats	-E	systemSTART
payload:	{	"name":"systemSTART"	}{"ret":"OK"}

.

.
$	yats	-E	systemSTOP
payload:	{	"name":"systemSTOP"	}{"ret":"OK"}paolo@phoenix	~/dev/simple/yats/client	{master}	$	

Instead	of	the	-E	switch,	it	can	be	called	like	this:

yats	--write-event	<event-name>	

The	recorded	story	for	those	events	will	look	something	like	this	in	the	Cassandra	table:

cas@cqlsh:yats>	SELECT	*	from	event	where	id_client='myclientname';

	id_client													|	etime																											|	name
-----------------------+---------------------------------+-------------------
	myclientname										|	2024-11-03	18:00:48.159000+0000	|							systemSTART
	myclientname										|	2024-11-03	18:00:52.681000+0000	|								systemSTOP

Writing	Metric	from	commandline

Metric	in	Yats	is	any	kind	of	measure	that	you	want	to	record.	It	can	be	a	single	sensor	read,	or	it	can
contain	a	data	structure	with	more	reads.

A	Metric	is	made	by	a	name	and	a	value.	The	name	is	used	to	distinguish	the	meaning	of	the	data,	while
the	value	is	the	actual	payload.

For	example,	you	can	store	the	registered	temperature	in	a	greenhouse	with:

$	yats	--write-metric	greenhouseDegrees	--metric-value	32.3		

or,	using	the	shorthands:

	$	yats	-M	greenhouseDegrees	-v	32.3

Different	writes	of	this	measure	would	produce	a	time	series	that	looks	like	this:

cas@cqlsh:yats>	SELECT	*	from	metric	where	id_client='myclientname'	and	name='greenhouseDegrees';

	id_client													|	name														|	mtime																											|	value
-----------------------+-------------------+---------------------------------+-------
	myclientname										|	greenhouseDegrees	|	2024-11-03	18:19:35.084000+0000	|		32.3
	myclientname										|	greenhouseDegrees	|	2024-11-03	18:21:27.632000+0000	|		32.3
	myclientname										|	greenhouseDegrees	|	2024-11-03	18:23:01.831000+0000	|				32
	myclientname										|	greenhouseDegrees	|	2024-11-03	18:23:06.232000+0000	|				31
	myclientname										|	greenhouseDegrees	|	2024-11-03	18:23:09.039000+0000	|				30
	myclientname										|	greenhouseDegrees	|	2024-11-03	18:23:13.863000+0000	|				27

Writing	Position	from	commandline

Position	in	YATS	works	as	a	special	type	of	measure,	as	such	it	has	its	own	switches:

		-P,	--write-position	string			write	position	name

and:

		-a,	--latitude	float										latitude
		-o,	--longitude	float									longitude

As	such	an	example	write	could	be	the	following:

$	yats	-P	myposition	--latitude	41.890251	--longitude	12.492373

Similarly	to	metrics,	the	data	stored	will	look	something	like	this:

cas@cqlsh:yats>	SELECT	*	from	position	where	id_client='myclientname';

	id_client													|	ptime																											|	lat						|	lon						|	name
-----------------------+---------------------------------+----------+----------+------------
	myclientname										|	2024-11-03	18:30:26.630000+0000	|	41.89025	|	12.49237	|	myposition
	.
	.

Reading	Data	Series

All	read	operations	on	dataseries	will	require	you	to	specify	somehow	a	time	interval,	by	means	of	a
FROM	and	a	TO	clause.

A	FROM	clause	is	always	recommended,	as	otherwise	queries	will	start	returning	results	from	time	0	UTC
@	0GMT.	In	some	cases,	omitting	the	TO	clause	can	makes	sense	in	order	to	retrieve	all	results	up	to	the
latest	recorded	point	in	time.

Event	Data	Series

Where	not	differently	specified,	the	input	timestamp	are	interpreted	as	seconds	in	UTC	time	recorded	in
the	timezone	@	0GMT

For	example,	to	list	all	the	events	for	the	current	client	from	1728901943	corresponding	to:	Mon	14	Oct
12:32:23	CEST	2024	you	can	issue	the	following	command:

$	yats	-e	--from	1728901943	

The	result	is	not	really	pretty-printed,	it	can	be	if	you	have	jq	installed,	like	this:

$	yats	-e	--from	1728901943	|	jq

which	will	give	you	a	formatted	output:

{
		"data":	[
				{
						"id_client":	"myclientname",
						"etime":	1728901943952,
						"name":	"systemSTART"
				},
				{

						"id_client":	"myclientname",
						"etime":	1730656600787,
						"name":	"systemSTOP"
				},
				{
						"id_client":	"myclientname",
						"etime":	1730656848159,
						"name":	"systemSTART"
				},
				{
						"id_client":	"myclientname",
						"etime":	1730656852681,
						"name":	"systemSTOP"
				}
],
		"maxpage":	1730656852681
}

Differently	from	the	input,	the	timestamps	in	the	response	have	the	definition	of	milliseconds.

Metric	Data	Series

Differently	from	Event,	retrieving	a	Metric	serie	for	a	specific	client	will	require	you	to	specify	the	name	of
the	metric	as	a	parameter,	like	this:

$	yats	-m	greenhouseDegrees		--from	1728901943	

which	produces:

1730657975084	greenhouseDegrees=32.3
1730658087632	greenhouseDegrees=32.3
1730658181831	greenhouseDegrees=32
1730658186232	greenhouseDegrees=31
1730658189039	greenhouseDegrees=30
1730658193863	greenhouseDegrees=27

Clearly	defining	time	intervals	in	terms	of	UTC	seconds	is	not	always	the	most	confortable	choice.
Therefore	it’s	possible	to	specify	the	time	in	a	different	format.	For	example,	you	can	specify	the	relative
time	from	the	current	moment	in	minutes	like	this:

$	yats	-m	greenhouseDegrees		--from	60	--min

Or,	using	hours	as	unit	of	measure:

yats	-m	greenhouseDegrees		--from	1	--hour

both	commands	will	produce	the	same	output:

1730657975084	greenhouseDegrees=32.3
1730658087632	greenhouseDegrees=32.3
1730658181831	greenhouseDegrees=32
1730658186232	greenhouseDegrees=31
1730658189039	greenhouseDegrees=30
1730658193863	greenhouseDegrees=27

At	the	same	way,	seconds	–sec	,	days	–day	,	years	–year	can	be	used.

Last,	but	not	the	least,	a	more	practical	YYYYMMDD	date	format	can	be	specified	with	the	–date
parameter.

See	for	example:

$	yats	-m	greenhouseDegrees		--date	20241103
1730657975084	greenhouseDegrees=32.3
1730658087632	greenhouseDegrees=32.3
1730658181831	greenhouseDegrees=32
1730658186232	greenhouseDegrees=31
1730658189039	greenhouseDegrees=30
1730658193863	greenhouseDegrees=27

Structured	Data

Data	in	Metric	can	be	either	a	single	measure,	or	a	structured	format,	typically	encoded	with	Base64	for
safe	storage.

One	use-case	for	simple	Base64-encoded	text	is	application	logging.

For	example,	you	could	have	logged	something	like	this:

cas@cqlsh:yats>	SELECT	*	from	metric	where	id_client='myclientname'	and	name='some-log';

	id_client													|	name								|	mtime																											|	value
-----------------------+-------------+---------------------------------+--------------------------

	myclientname										|	some-log				|	2024-11-03	19:54:04.000000+0000	|	
VGhpcyBzZXJ2aWNlIGdhdmUgZXJyb3IgY29kZSBYWVoK
	myclientname										|	some-log				|	2024-11-03	19:54:13.000000+0000	|																	
RXZlcnl0aGluZyBpcyBmaW5lCg==

The	relevant	information	here	is	base64-encoded	in	the	value	column.	From	the	yats	client,	the	following
query:

	$	yats	-m	some-log	--from	1730663612

would	produce	the	following	output:

1730663644000	some-log=VGhpcyBzZXJ2aWNlIGdhdmUgZXJyb3IgY29kZSBYWVoK
1730663653000	some-log=RXZlcnl0aGluZyBpcyBmaW5lCg==

which,	depending	on	how	you	are	consuming	the	information,	might	or	might	not	be	something	useful.

If	you	are	only	interested	in	the	Base64	portion,	you	can	print	that	with	the	-l	switch,	like	this:

$	yats	-m	some-log	--from	1730663612	-l

which	gets	you:

VGhpcyBzZXJ2aWNlIGdhdmUgZXJyb3IgY29kZSBYWVoK
RXZlcnl0aGluZyBpcyBmaW5lCg==

Or,	you	can	get	the	decoded	Base64	directly	with	the	combination	of	switches:	-lb	like	this:

$	yats	-m	some-log	--from	1730663612	-lb

which	prints	out	in	this	case	the	text	logs:

-	This	service	gave	error	code	XYZ
-	Everything	is	fine

The	encoded	base64	text	could	be	a	Json	message,	in	which	case	another	helper	switch	is	provided:	-u
The	use	is	described	in	an	example	below.

Let’s	say	that	you	have	the	following	data	saved	in	the	backend:

cas@cqlsh:yats>	SELECT	*	from	metric	where	id_client='myclientname'	and	name='some-log';

	id_client				|	name					|	mtime																											|	value
--------------+----------+---------------------------------+--------------------------------------
--
	myclientname	|	some-log	|	2024-11-03	20:13:22.000000+0000	|	
eyJrMSI6InYxIiwibWVzc2FnZSI6ImZpcnN0IG1lc3NhZ2UiLCJ0cyI6IjE3MzA2NjQ4MDIifQo=
	myclientname	|	some-log	|	2024-11-03	20:13:26.000000+0000	|	
eyJrMSI6InYxIiwibWVzc2FnZSI6InNlY29uZCBtZXNzYWdlIiwidHMiOiIxNzMwNjY0ODA2In0K
	myclientname	|	some-log	|	2024-11-03	20:13:31.000000+0000	|	
eyJrMSI6InYxIiwibWVzc2FnZSI6InRoaXJkIG1lc3NhZ2UiLCJ0cyI6IjE3MzA2NjQ4MTEifQo=

the	literal	value	of	the	logs	can	be	printed	out	by	doing:

$	yats	-m	some-log	--from	1730664802		
1730664806000	some-
log=eyJrMSI6InYxIiwibWVzc2FnZSI6InNlY29uZCBtZXNzYWdlIiwidHMiOiIxNzMwNjY0ODA2In0K
1730664811000	some-
log=eyJrMSI6InYxIiwibWVzc2FnZSI6InRoaXJkIG1lc3NhZ2UiLCJ0cyI6IjE3MzA2NjQ4MTEifQo=

which	is,	of	course,	not	very	readable.	Base64-decoding	looks	like	this,	instead:

$	yats	-m	some-log	--from	1730664802		-lb
{"k1":"v1","message":"second	message","ts":"1730664806"}
{"k1":"v1","message":"third	message","ts":"1730664811"}

Here	the	payload	is	printed	in	it	json	form.	In	fact	you	can	verify	that:

eyJrMSI6InYxIiwibWVzc2FnZSI6InNlY29uZCBtZXNzYWdlIiwidHMiOiIxNzMwNjY0ODA2In0K

is	the	same	as:

{"k1":"v1","message":"second	message","ts":"1730664806"}

You	can	use	the	following	command	to	check	that:

$	echo	"eyJrMSI6InYxIiwibWVzc2FnZSI6InNlY29uZCBtZXNzYWdlIiwidHMiOiIxNzMwNjY0ODA2In0K"	|	base64	-d
{"k1":"v1","message":"second	message","ts":"1730664806"}

Now,	when	you	are	querying	for	such	json	logs	in	the	form	of	Base64	text,	rather	than	having	a	stack	of
strings	like	the	following:

$	yats	-m	some-log	--from	1730664802		-lb
{"k1":"v1","message":"second	message","ts":"1730664806"}
{"k1":"v1","message":"third	message","ts":"1730664811"}
{"k1":"v1","message":"fourth	message","ts":"1730738703"}
{"k1":"v1","message":"fifth	message","ts":"1730738809"}

it	can	be	convenient	if	the	json	payload	is	formatted	as	rows	and	column	in	a	CSV	representation.	You	con
obtain	this	visualization	like	this:

	$	yats	-m	some-log	--from	1730664802		-u
"timestamp","k1","message","ts";
2024-11-03T21:13:26+01:00,"v1","second	message","1730664806";
2024-11-03T21:13:31+01:00,"v1","third	message","1730664811";
2024-11-04T17:45:03+01:00,"v1","fourth	message","1730738703";
2024-11-04T17:46:49+01:00,"v1","fifth	message","1730738809";

The	output	is	a	CSV	that	you	can	save	and	open	as	a	spreadsheet.

Client	Auto-Paging

In	analogy	with	what	we	have	seen	for	Event,	the	webservice	from	YATS	server	will	return	with	every
query	an	attribute	like	the	following:

	"maxpage":	1730656852681

This	is	the	maximum	value	for	all	the	timestamps	in	a	single	server	response.	The	server	responds	to
queries	with	at	most	maxResults.	At	the	time	of	this	writing,	maxResults=100	but	it	can	possibly	change
in	future,	in	order	to	provide	maximum	efficiency.

The	Yats	client,	when	querying	for	a	time-series	between	FROM	and	TO	will	check	if	the	maxpage	in	the
results	is	equal	to	the	TO	clause,	and	in	case	it’s	not,	it	will	query	further,	until	either	the	point	in	time	is
reached,	or	there	are	no	more	results	to	retrieve.

Position	Data	Series

Position	data	series	can	be	queried	specifying	time	windows	exactly	as	described	for	Event	and	Metric.

$	yats	-p	myposition	--from	1728901943

Building	Yats	CE	from	Sources

Requirements

Golang	1.22
Git
make

Downloading	the	latest	sources

git	clone	https://code.kevwe.com/git/yats.git

Building	Yats	Server

cd	yats/server
go	build

Building	Yats	Client

cd	yats/client
go	build

Building	All	there	is	to	it

make

CrossCompile	for	different	architectures

Yats	is	implemented	in	Go	and	tested	in	a	Linux	environment.	It	can	be	run	in	any	combinations	of	OS
and	architecture	that	Go	supports,	therefore	you	should	be	able	to	just	use	the	GOOS	and	GOARCH
environment	variables	for	the	purpose.

For	example,	you	can	build	the	project	for	Arm	while	running	on	x86_64.	The	following	is	the	correct
command	for	compiling	on	the	popular	board	RaspberryPi:

GOOS=linux	GOARCH=arm	go	build	

Or,	if	you	are	on	Linux,	you	might	want	Windows	executables	for	some	reason:

GOOS=windows	GOARCH=amd64	go	build

License

The	code	is	freely	available	under	the	Affero	GPL	License	see:	COPYING

Additional	commercial	support	and	licensing	is	available	on	request.	Just	issue	a	support	request	and
mention	you	are	interested	in	yats

Logging	to	Yats	from	Java

file:///yats.git/tree/master/COPYING
https://kevwe.com/message
file:///home/paolo/dev/simple/yats-doc/html2pdf49540-0.html

Creating	a	Java	Client

import	jakarta.servlet.http.HttpServletRequest;

import	java.net.URI;
import	java.net.http.HttpClient;
import	java.net.http.HttpRequest;
import	java.net.http.HttpResponse;
import	java.nio.charset.StandardCharsets;
import	java.util.Base64;
import	java.util.Objects;
import	java.util.concurrent.CompletableFuture;

public	class	YatsLog	{
				private	final	String	logName;
				private	final	String	clientId;
				private	final	String	endpoint;
				private	static	final	HttpClient	httpClient	=	HttpClient.newBuilder().build();

				public	static	YatsLog	with(String	endpoint,	String	clientId,	String	logName)	{
								return	new	YatsLog(endpoint,	clientId,	logName);
				}

				private	YatsLog(String	endpoint,	String	clientId,	String	logName)	{
								Objects.requireNonNull(endpoint);
								Objects.requireNonNull(clientId);
								Objects.requireNonNull(logName);

								this.endpoint	=	endpoint;
								this.logName	=	logName;
								this.clientId	=	clientId;
				}

				public	CompletableFuture	logMessage(Long	timestamp,	String	message)	{
								var	json	=	String.format("""
																	{"mtime":	%d,	"name":	"%s",	"value":	"%s"}
																""",	timestamp,	logName,	message);

								System.out.printf("endpoint	=	%s,	clientId	=	%s,	logName	=	%s\n",	endpoint,	clientId,	
logName);
								System.out.printf("json	=	[%s]",	json);

								return	CompletableFuture.supplyAsync(
																()	->	post(clientId,	endpoint	+	"/metric",	json)
);
				}

				public	CompletableFuture	logRequest(Long	timestamp,	HttpServletRequest	request)	{
								var	payloadJson	=	Json.with("created",	timestamp)
																.and("urlname",	request.getRequestURL().toString())
																.and("referer",	request.getHeader("referer"))
																.and("host",	request.getHeader("host"))
																.and("userAgent",	request.getHeader("user-agent"))
																.and("x-ssl-client-cn",	request.getHeader("x-ssl-client-cn"))
																.and("x-forwarded-for",	request.getHeader("x-forwarded-for"));

								var	base64	=	Base64.getEncoder()
																.encodeToString(payloadJson.toString().getBytes(StandardCharsets.UTF_8));

								var	jsonMessage	=	String.format("""
																	{"mtime":	%d,	"name":	"%s",	"value":	"%s"}

																""",	timestamp,	logName,	base64);

								return	CompletableFuture.supplyAsync(
																()	->	post(clientId,	endpoint	+	"/metric",	jsonMessage)
);
				}

				private	static	String	post(String	clientId,	String	url,	String	jsonString)	{
								try	{
												var	request	=	
HttpRequest.newBuilder().POST(HttpRequest.BodyPublishers.ofString(jsonString))
																				.uri(URI.create(url))
																				.header("accept",	"application/json")
																				.header("X-SSL-Client-CN",	clientId)
																				.build();
												var	response	=	httpClient.send(request,	HttpResponse.BodyHandlers.ofInputStream());
												return	new	String((response.body()).readAllBytes());
								}	catch	(Exception	e)	{
												return	null;
								}
				}
}

Logging	Requests	with	a	Filter

import	jakarta.servlet.Filter;
import	jakarta.servlet.FilterChain;
import	jakarta.servlet.ServletRequest;
import	jakarta.servlet.ServletResponse;
import	jakarta.servlet.http.HttpServletRequest;
import	jakarta.servlet.http.HttpServletResponse;

public	class	YatsLogFilter	implements	Filter	{
				private	final	YatsLog	yatsLog	=	Main.yatsLog;

				public	void	doFilter(
												ServletRequest	req,
												ServletResponse	res,
												FilterChain	chain
)	{
								try	{
												var	resp	=	(HttpServletResponse)	res;
												yatsLog.logRequest(System.currentTimeMillis()	/	1000,	(HttpServletRequest)	req);
												chain.doFilter(req,	resp);
								}	catch	(Exception	e)	{
												e.printStackTrace();
								}
				}
}

©	2024	-	Kevwe	Technology	AB

